
OBJECT DETECTION VIA BOOSTED DEFORMABLE FEATURES

Mohamed Hussein∗, Fatih Porikli

Mitsubishi Electric Research Labs
Cambridge, MA 02139

Larry Davis

University of Maryland
Dept. of Computer Science
College Park, MD 20742

ABSTRACT

It is a common practice to model an object for detection tasks as a

boosted ensemble of many models built on features of the object.

In this context, features are defined as subregions with fixed rela-

tive locations and extents with respect to the object’s image window.

We introduce using deformable features with boosted ensembles. A

deformable features adapts its location depending on the visual evi-

dence in order to match the corresponding physical feature. There-

fore, deformable features can better handle deformable objects. We

empirically show that boosted ensembles of deformable features per-

form significantly better than boosted ensembles of fixed features for

human detection.

Index Terms— Human Detection, Boosting, Deformable Fea-

tures

1. INTRODUCTION

Human detection is one of the most challenging tasks in computer

vision with a long list of applications in several domains, such as in-

telligent vehicles, video surveillance, and interactive environments.

Approaches for human detection can be categorized based on how

the human body is modeled. In one category, a holistic model is

used, where the human body is modeled as a whole without being

divided into smaller parts [1, 2, 3]. In a second category, a part-based

model is used, where models for parts of the body are learnt, possi-

bly along with global constraints that need to be satisfied [4, 5, 6].

Part-based models, in general, deliver better performance than holis-

tic models since they can better handle partial occlusion. However,

their drawback is that the number of parts and their locations has to

be manually set. A third category of approaches addresses this prob-

lem by modeling the body as an ensemble of features. A feature in

this context is a subregion of an object’s image window identified by

its relative position and size. Typically, boosting techniques [7] are

used to select the best features among all possibilities [8, 9, 10].

The common drawback of most part and feature based models

is the difficulty of handling deformation since feature and part

locations are fixed. However, in deformable objects, physical

parts/features are hardly fixed in location. Consider for example

the head part/feature in the human images in Figure 1, from the

INRIA Person dataset [3]. Felzenszwalb et al. [11] proposed de-

formable part models to handle this problem. However, as other

part models, this work lacks the flexibility of automatically deter-

mining the number, locations, and sizes of parts. In this paper, we

introduce deformable features, instead of deformable parts, to be

∗The first author is a graduate student at the University of Maryland, and
was an intern at Mitsubishi Electric Research Labs while doing most of this
work.

(a) (b) (c) (d) (e) (f)

Fig. 1. An illustration of the desired behavior of a deformable fea-

ture for the head. The feature’s initial location is marked by a dotted

rectangle and the desired final location is marked with a solid rect-

angle. Notice how the initial location is often not aligned with the

actual location of the physical feature (head).

used in boosting ensembles. To the best of our knowledge, our work

introduces deformation to feature based models for the first time.

The rest of the paper is organized as follows: Section 2 intro-

duces deformable features. Boosting of deformable features is ex-

plained in Section 3. Details of our implementation and experimen-

tal results are provided in Sections 4 and 5. Finally, the paper is

concluded in Section 6.

2. DEFORMABLE FEATURES

In the context of feature-based models for object detection, we de-

fine a deformable feature (d-feature) as a feature that is not bound

to a fixed location in the object’s model. Rather it can move (trans-

late) in a small neighborhood around a central location. We would

like a d-feature to be able to locate the physical feature it represents

within this neighborhood. Figure 1 illustrates the desired behavior

of a d-feature that represents the head of a human. Starting from

an initial (typical) location for the physical feature, illustrated as a

dotted rectangle, the feature moves to a better location to capture the

physical feature. In this section, we explain how to train a model

for a d-feature. In section 3, we explain how to combine models for

individual d-features to build an ensemble that represents the object

as a whole.

2.1. Learning Deformable Features

The main advantage of feature-based models is the automatic selec-

tion of representative features from a very large pool. We do not even

need to know what the underlying physical features are. Therefore,

our framework has to be able to automatically learn d-features based

solely on the image data.

1445978-1-4244-5654-3/09/$26.00 ©2009 IEEE ICIP 2009

procedure DEFREFINE(F,X)

� F is a feature, X is a set of N training examples

∀xi ∈ X , zi
0 ← z0

for j = 0 to k do

Estimate θj based on zi
j , i = 1..N

zi
j+1 ← arg maxz∈Z θj(ΔF(xi, z), z),∀i

end for

end procedure

Fig. 2. Pseudo-code for the d-feature model refinement procedure.

+

_

0 1 2

Fig. 3. A toy classification task to illustrate the effect of refining

d-feature’s model. Sample positive and negative images are in the

first the second rows. The learned weight vector after 0, 1, and 2

refinement iterations, Figure 2, are in the bottom row. Refinement

enhances the match to the shape of the positive object.

Let F = (s, z0, Z) be a d-feature identified by its size s, its initial

location z0 and a neighborhood Z relative to z0 in which the feature

is allowed to move. Let ΔF(x, z) be a descriptor of the feature’s

appearance in an example x at location z ∈ Z, e.g. a HOG descrip-

tor [9]. For simplicity, we will omit the variable x when confusion is

not expected. Let θ(ΔF, z) be a scoring function that measures the

likelihood of an example being positive given the appearance of the

feature F at location z, i.e. p(O|ΔF(z), z). Note that, θ depends on

both ΔF(z) and z. This allows us to model the case when the prior

probability of z is not uniform.

On one hand, to learn the scoring function θ, we need to know

the locations of the feature F in the training examples. On the other

hand, to estimate the location of the feature in a given example, we

need an objective function (scoring function) to optimize (maximize)

over the feature’s neighborhood Z. To break this cycle, we can start

with an approximation to the scoring function by assuming the fea-

ture’s location in all training examples to be the initial location z0.

Let θ0 be the initial estimate for the scoring function obtained based

on this assumption. Recall our prior assumption that features move

within a small neighborhood around their initial (typical) locations.

If we further assume also that typically the feature is close to its

initial location, then the initial model θ0 is expected to capture the

rough appearance of the feature. Therefore, we can use θ0 to es-

timate the feature location in a given example by maximizing the

function over the neighborhood Z. Given these estimated locations,

we can learn a better estimate for the scoring function θ. We can

keep iterating over these two steps to reach a refined estimate for the

scoring function θ. This procedure is illustrated in Figure 2.

To visualize the effect of refining the d-feature’s model, consider

the toy classification task illustrated in Figure 3. In this task, all

images are 40 × 40. Positive samples contain circles with the same

radius of 8 pixels. The circles can be at random locations in the

20×20 central square of the image. Negative images contain random

points in the same central square. We trained a Linear Discriminant

Analysis model on the raw binary pixel values of the internal 20×20
squares in all images. In the bottom row of Figure 3, we show the

obtained weight vectors after 0, 1, and 2 refinement iterations. We

can observe that the more we refine the model, the better it matches

the shape of the object we are training for, which is a circle in this

case.

2.2. Classification With Deformable Features

We explained how a d-feature learns its best location on each training

example and its object likelihood function through iteratively refin-

ing both in alternation. On a testing example, we select the feature

location, z∗, to be the location that maximizes the scoring function,

and then consider the score at that location to be the object likeli-

hood, equations 1 and 2.

z
∗ = arg max

z∈Z

θ(ΔF(z)) (1)

θ∗ = θ(ΔF(z
∗)) . (2)

This procedure is equivalent to finding the Maximum Likelihood

(ML) estimate of the feature location and using the corresponding

object likelihood value as the score of the feature for the given test

sample. This is similar to the way parts are deformed by Felzen-

szwalb et al. [11].

3. BOOSTED DEFORMABLE FEATURES

A boosting algorithm forms a strong classification ensemble out of

weak classifiers. It adds ensemble members incrementally so that

each newly added member performs the best in the training sam-

ples that are poorly learned by the current ensemble. In feature-

based detectors, each weak classifier is built on a single feature, and

the boosting algorithm selects one feature to add to the ensemble

in every iteration. There are several variants of boosting. We ex-

perimented with the LogitBoost algorithm [7]. For completeness of

presentation, the algorithm is reproduced in Figure 4 with the nec-

essary modifications to fit with our framework. The only change is

in the fitting of zi to xi, where zi is computed by the algorithm,

and xi in our case is the ΔF descriptors. In the case of d-features,

we do not apply one step of least squares regression. Instead we

use the iterative procedure in Figure 2 to allow the feature to find

its best location. An important point to make here is that values of

the θ function used to update F (x) in the final step of the for loop

of LogitBoost must be based on the estimates of the best locations z

computed in the final iteration of DefRefine in Figure 2. It is tempt-

ing to skip computing the z values in the final iteration, since they

are not used to update the model for θ again. However, they are used

to compute the object likelihood scores, which, in turn, are used to

update F (x) of LogitBoost.

4. IMPLEMENTATION DETAILS

We use the HOG descriptor [9] to represent the features. The HOG

descriptor of a feature is a concatenation of four histograms, each

built on one quadrant of the feature. Each histogram contains 9

bins representing 9 ranges of orientation directions. Each pixel con-

tributes to two bins of the histogram by linear interpolation. Each

pixel also contributes to the 4 quadrants with bilinear interpolation.

Computing these descriptors is very fast using kernel integral im-

ages [12].

1446

procedure LOGITBOOST(F ,X)

� F : set of M features, X : set of N examples

∀xi ∈ X , wi = 1
N

, p(xi) = 1
2
, F (xi) = 0

for k = 1 to K do

Compute the working response and weights

zi =
y∗

i − p(xi)

p(xi)(1− p(xi))

wi = p(x
i)(1− p(x

i))

∀F ∈ F fit the function θF

by a weighted least-squares regression of zi to xi

with weights wi using the procedure in Figure 2.

Update F (x)← F (x) + 1
2
fk(x), and

p(x)← eF (x)/(eF (x) + e−F (x)),

where fk(x) is θF that minimizes the residual.

end for

Output the classifier sign[F (x)]
end procedure

Fig. 4. Pseudo-code for the LogitBoost algorithm on d-features.

Note that y∗

i is set to 0 for a negative example and to 1 for a pos-

itive example.

The deformation neighborhood is made to be double the size of

the feature in both dimensions, with a maximum of 16 pixels away

from the feature’s boundary. On searching for the best feature loca-

tion, we use 5 steps in each dimension. We use two types of scoring

functions. One is based only on the descriptor and the other is based

on the descriptor and location together. In the latter version, simi-

lar to Felzenszwalb et al. [11], we concatenate δ = z∗ − z0 and its

element-wise square to the descriptor and estimate a function θ based

on the concatenated descriptor. Since the function θ in our case is

a linear function, the concatenation of δ values to the descriptor is

equivalent to decomposing θ as θdescriptor + θdisplacement. There-

fore, this is equivalent to using an additive penalty term in the scoring

function. This is also equivalent to learning a non-uniform prior for

the feature location.

We use a rejection cascade [13] of 30 layers of LogitBoost clas-

sifiers. Each layer is adjusted to produce detection rate of 99.8% at

false alarm rate of 65%.

5. EXPERIMENTAL RESULTS

We trained and tested all our classifiers on the INRIA Person

dataset [3]. In this dataset, training and testing positive images

are resized so that the human body is around 96 pixels high. A

margin of 16 pixels is added to the top and the bottom to make

the height 128 pixels and the width 64 pixels. The negative testing

images are scanned with this window size (64 × 128) with a step

of 8 pixels in both dimensions, to create close to a million sample

negative images.

In this section, we refer to the variant of d-features that uses an

additive penalty term in the scoring function (Section 4) by Max-

Def-Add, and the variant without penalty as Max-Def. We exper-

imented with the two variants with number of refinement steps 1
or 2, along with the conventional Non-Def features (0 refinements).

We use DET (Detection Error Tradeoff) curves to present the de-

tection results, figures 5, where the plots are generated by changing

the number of cascade layers. In these plots the number of refine-

ments appears at the end of the legend, when applicable. As the

10
−4

10
−3

10
−2

10
−1

10
−2

10
−1

False Alarm Rate

M
is

s
 R

a
te

Non−Def

Max−Def−1

Max−Def−Add−1

Max−Def−2

Max−Def−Add−2

Fig. 5. DET curves for cascaded boosted HOG features classifiers on

INRIA Person dataset with and without d-features. Using d-features

helps reduce the miss rate by up to 30% at false alarm rate of 3 ×
10−4, and reduce the false alarm rate by 66% at the miss rate of 8%.

figure shows, only the Max-Def-2 and the Max-Def-Add-2 consis-

tently outperform the Non-Def classifier. Max-Def-Add-1 compares

favorably over most of the false alarm rate’s range. Max-Def-1 is in-

ferior to the Non-Def classifier beyond false alarm rates of 2×10−3 .

Max-Def-Add-2 is the clear winner among all. At a false alarm rate

3× 10−4, Max-Def-Add-2 reduces the miss rate compared to Non-

Def by 30%, from 10% to 7%. At the miss rate of 8%, it reduces the

false alarm rate to about one third, from 8 × 10−4 to 2.5 × 10−4.

These results highlight the value of d-features and the importance of

performing multiple refinement iterations during training.

In Figure 6, examples of detection errors obtained using Non-

Def that are successfully corrected using Max-Def-Add-2 are shown.

To produce these images, each classifier is applied to the image us-

ing a sliding window approach, where the search step is set to 5%
of the size of the search window in each dimension. The search

sizes are selected based on knowledge of ground truth annotations.

The resulting detection windows are then grouped using the mean

shift algorithm on the location and height of the windows. For each

searching size, the image is resized so that we always search using

the size used in training.

6. CONCLUSION

We introduced deformable Features (d-features in short) and showed

how they can be used to enhance the performance of boosted feature-

based object detectors. The advantage of d-features over the reg-

ular ones is their ability to search for the locations of the corre-

sponding physical features before computing their matching scores.

This property makes them able to better handle complicated object

structures and deformations than fixed location features. We exper-

imented with d-features on human detection in a cascaded boosting

framework. Our experiments showed a consistent enhancement in

performance when using d-features.

We use brute force search in our current implementation, which

makes training and testing classifiers using d-features slow. How-

ever, the distance transform techniques [14] can be used to make it

more efficient. This approach can be extended in many other ways.

We can apply the d-features using other common descriptors, such as

the covariance descriptors [10]. Other objects, rigid and non-rigid,

can benefit from the approach.

1447

Fig. 6. Sample detections by the cascade boosted HOG features classifiers. The top image of every pair has the results from the Non-Def

classifier (without d-features). The bottom image has the results with d-features with 2 refinement iterations and with a penalty term.

7. REFERENCES

[1] D.M. Gavrila and V. Philomin, “Real-time object detection for

smart vehicles,” in Proc. IEEE Conf. on Computer Vision and

Pattern Recognition, Fort Collins, CO, 1999, pp. 87–93.

[2] P. Papageorgiou and T. Poggio, “A trainable system for object

detection,” Int’l J. of Computer Vision, vol. 38, no. 1, pp. 15–

33, 2000.

[3] Navneet Dalal and Bill Triggs, “Histograms of oriented gra-

dients for human detection,” in Proc. IEEE Conf. on Com-

puter Vision and Pattern Recognition, San Diego, CA, 2005,

pp. 886–893.

[4] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based

object detection in images by components,” IEEE Trans. Pat-

tern Anal. Machine Intell., vol. 23, no. 4, pp. 349–360, 2001.

[5] K. Mikolajczyk, C. Schmid, and A. Zisserman, “Human detec-

tion based on a probabilistic assembly of robust part detectors,”

in Proc. European Conf. on Computer Vision, Prague, Czech

Republic, 2004, vol. 1, pp. 69–81.

[6] Zhe Lin, Larry Davis, David Doermann, and Daniel DeMen-

thon, “Hierarchical part-template matching for human detec-

tion and segmentation,” in Proc. 10th Intl. Conf. on Computer

Vision, Rio de Janeiro, Brazil, 2007.

[7] Jerome Friedman, Trevor Hastie, and Robert Tibshirani, “Ad-

ditive logistic regression: A statistical view of boosting,” An-

nals of Statistics, vol. 28, pp. 337407, 2000.

[8] P. Viola, M. Jones, and D. Snow, “Detecting pedestrians us-

ing patterns of motion and appearance,” in Proc. IEEE Conf.

on Computer Vision and Pattern Recognition, New York, NY,

2003, vol. 1, pp. 734–741.

[9] Qiang Zhu, Shai Avidan, Mei-Chen Yeh, and Kwang-Ting

Cheng, “Fast human detection using a cascade of histograms

of oriented gradients,” in Proc. IEEE Conf. on Computer Vi-

sion and Pattern Recognition, New York, NY, New York, June

2006, vol. 2, pp. 1491 – 1498.

[10] Oncel Tuzel, Fatih Porikli, and Peter Meer, “Human detection

via classification on riemannian manifolds,” in IEEE Computer

Society Conference on Computer Vision and Pattern Recogni-

tion, 2007, pp. 1–8.

[11] Pedro Felzenszwalb, David McAllester, and Deva Ramanan,

“A discriminatively trained, multiscale, deformable part

model,” in Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, , Anchorage, AK, 2008, pp. 1–8.

[12] Mohamed Hussein, Fatih Porikli, and Larry Davis, “Kernel

integral images: A framework for fast non-uniform filtering,”

in Proc. IEEE Conf. on Computer Vision and Pattern Recogni-

tion, , Anchorage, AK, June 2008, pp. 1–8.

[13] Paul Viola and Michael Jones, “Rapid object detection using

a boosted cascade of simple features,” in Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, Kauai, HI, 2001, p.

511518.

[14] Pedro Felzenszwalb and Daniel Huttenlocher, “Pictorial struc-

tures for object recognition,” in Int’l J. of Computer Vision,

2005, vol. 61, pp. 55–79.

1448

